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Random Network Coding



Random Network Coding

Consider a single unicast (one transmitter, one receiver).

1 Break a file into M fixed-length packets, each regarded as a
vector over Fq, and inject these packets into the network.

2 Packets propagate through the network, possibly passing
through intermediate nodes between transmitter and receiver.

3 When intermediate nodes are granted a transmission
opportunity, they forward a random Fq-linear combination of
packets seen so far.

4 The receiver essentially collects as many of these these
randomly combined packets as possible and tries to infer what
was sent.



What if there are errors?

+1in+1in



Random Network Coding

Let {p1, p2, . . . , pM}, pi ∈ FN
q be the injected vectors.

In the error-free case, the receiver collects L packets y1, y2, . . . , yL,
were

yj =
M
∑

i=1

hj ,ipi ,

where hj ,i ∈ Fq are randomly chosen coefficients.

The number L of packets gathered is not fixed a priori.
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Random Network Coding

Let {p1, p2, . . . , pM}, pi ∈ FN
q be the injected vectors.

In the error-free case, the receiver collects L packets y1, y2, . . . , yL,
were

yj =
M
∑

i=1

hj ,ipi ,

where hj ,i ∈ Fq are randomly chosen coefficients.

The number L of packets gathered is not fixed a priori.

In the absence of errors:

y = Hp

where p is an M × N matrix over Fq whose rows are
p1, p2, . . . , pM , and H is a random L × M matrix over Fq.

Remark: Often p is chosen as p = [I |A], so that
y = Hp = [H|HA] (prepend header).



Random Network Coding (cont’d)

We may also wish to model the injection of T erroneous packets
e1, e2, . . . , et somewhere in the network, giving

yj =
M
∑

i=1

hj ,ipi +
T
∑

t=1

gj ,tet

where again gj ,t ∈ Fq are random coefficients.



Random Network Coding (cont’d)

We may also wish to model the injection of T erroneous packets
e1, e2, . . . , et somewhere in the network, giving

yj =
M
∑

i=1

hj ,ipi +
T
∑

t=1

gj ,tet

where again gj ,t ∈ Fq are random coefficients.

In the presence of errors:

y = Hp + Ge

where

p is an M × N matrix over Fq whose rows are p1, p2, . . . , pM ,

e is an T × N matrix over Fq whose rows are e1, e2, . . . , eT ,

H is a random L × M matrix over Fq,

G is a random L × T matrix over Fq.



Remarks:

Due to error propagation, the injection of even a single error
packet has the potential to corrupt each and every received
packet.

The network topology will certainly impose structure on H

and G (e.g., H may be rank-deficient due to a small min-cut
between transmitter and receiver); however we will not
attempt to exploit such structure.
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The Key Idea

Q: Even if e = 0 (no errors), since H is random, what property of
Hp is preserved to allow for information transmission?

A:

Each received packet is in the row space of p, i.e., Hp performs
linear combinations of the rows of p.
In other words, the row space of p is preserved.

We may therefore attempt to convey information by the selection
at the transmitter of a vector space V . The transmitter conveys
this selection by injection into the network of a basis for V . The
receiver gathers vectors so as to be able to identify the selected
space.

Remark: The setup is reminiscent of the noncoherent multiple
antenna channel as studied, e.g., in [ZheTse02] (“Communication
on the Grassmannian manifold”), only instead of working in C we
work in Fq.



The Channel Model

Let W be an N-dimensional vector space over FN
q . (Transmitted

and received packets are elements of W .)

Let P(W ) denote the set of all subspaces of W (sometimes called
the projective geometry of W ).

Definition

An operator channel associated with ambient space W is a channel
with input and output alphabet P(W ). The channel input V and
channel output U are related as

U = Hk(V ) ⊕ E

where Hk is an erasure operator, E ∈ P(W ) is an arbitrary error
space and ⊕ denotes direct sum. If dim(V ) ≥ k , then
Hk(V ) = V ; otherwise Hk(V ) acts to project V onto randomly
chosen k-dimensional subspace of V .



A Metric

Let A and B be subspaces of W .

The distance between A and B is defined as

d(A, B) := dim(A + B) − dim(A ∩ B).

d(A, B) is equal to the the minimal number of insertions and
deletions of generators that are required to transform a basis for A

into a basis for B.

(Analogous to Hamming distance in classical coding theory, which
is equal to the minimum number of symbol changes required to
transform a vector A into a vector B.)



Codes

Definition

A code for an operator channel with ambient space W ≃ FN
q is a

nonempty subset of P(W ).

The size of a code C is denoted |C|.

The minimum distance of C is denoted by

D(C ) = min
X ,Y∈C,X 6=Y

d(X , Y )

The maximum dimension of elements of C is denoted by

ℓ(C ) = max
X∈C

dim(X )

We say that C is a q-ary code of type (N, ℓ(C ), logq |C |, D(C )).



Minimum Distance Decoding

Definition

A minimum distance decoder for C takes the output U of an
operator channel and returns a nearest codeword V ∈ C, i.e., a
codeword V satisfying, for all X ∈ C, d(U, V ) ≤ d(U, X ).



Error-and-Erasure Correcting Capability

Theorem

Assume we use a code C for transmission over an operator channel.

Let V ∈ C be transmitted, and let

U = Hk(V ) ⊕ E

be received, where dim(E ) = t. Let ρ = (ℓ(C) − k)+ denote the

maximum number of erasures induced by the channel. If

2(t + ρ) < D(C),

then a minimum distance decoder for C will produce the

transmitted space V from the received space U.

Proof: standard application of the triangle inequality.

Remark: “erasures” (i.e., deletion of desired dimensions) cost the
same as “errors” (i.e., insertion of undesired dimensions).



Coding in the Grassmann Graph

It is natural for random network coding applications to consider
codes in which all codewords have the same dimension ℓ.

Definition

Let P(W , ℓ) be the set subspaces of W of dimension ℓ (a
Grassmannian). The Grassmann graph GW ,ℓ has vertex set
P(W , ℓ) with an edge joining vertices U and V if and only if
d(U, V ) = 2 (which means that dim(U ∩ V ) = ℓ − 1 or
dim(U + V ) = ℓ + 1).

The distance between any elements the Grassmann graph is an
even integer. The diameter of the graph is 2ℓ.

Remark: It is well known [BroCohNeu89] that GW ,ℓ is
distance-regular. The so-called q-Johnson association scheme
arises from this graph. Virtually all techniques for bounding codes
in the Hamming scheme (e.g., sphere-packing and sphere-covering
concepts) apply here.



Code Rate

Let C be an (N, ℓ, logq |C|, D) code. Transmission of a basis for a
codeword requires transmission of up to Nℓ q-ary symbols.

Definition

The rate of a (N, ℓ, logq |C, D) code is

R =
logq |C|

Nℓ
.

We also introduce the normalized parameters:

the normalized weight: λ = ℓ/N ∈ [0, 1]

the normalized minimum distance δ = D/2ℓ ∈ [0, 1]



Examples of Codes

Example

(Classical “uncoded” network coding.)
Let C1 ⊂ P(W , ℓ) be the set of spaces U having a generator
matrix of the form [I |A], where I is the ℓ × ℓ identity matrix.

This is a code of type (N, ℓ, ℓ(N − ℓ), 2) with normalized weight
λ = ℓ/N and rate R = 1 − λ.



Examples of Codes

Example

(Classical “uncoded” network coding.)
Let C1 ⊂ P(W , ℓ) be the set of spaces U having a generator
matrix of the form [I |A], where I is the ℓ × ℓ identity matrix.

This is a code of type (N, ℓ, ℓ(N − ℓ), 2) with normalized weight
λ = ℓ/N and rate R = 1 − λ.

Example

(“uncoded” network coding with strictly more codewords.)
Let C2 be P(W , ℓ) itself.

This is a code of type (N, ℓ, logq |P(W , ℓ)|, 2) with strictly more
codewords than C1.



Examples of Codes (cont’d)

Example

(“uncoded” network coding with even more codewords)
Let C3 be

⋃ℓ
i=1 P(W , i).



Elementary Bounds



Gaussian Coefficients

For any non-negative integer i , define

JiKq :=

{

1 if i = 0,
qi − 1 if i > 0.

,

and let

JiKq! :=
i
∏

j=0

JjKq.

Definition

The Gaussian coefficient
[

n
m

]

q
is defined as

[

n

m

]

q

:=

{

JnKq!
JmKq!Jn−mKq!

0 ≤ m ≤ n

0 otherwise.



Theorem

The number of ℓ-dimensional subspaces of an N-dimensional

vectors space over Fq equals
[

N
ℓ

]

q
.

Asymptotically, the Gaussian coefficient behaves as q−ℓ(n−ℓ).

Theorem

The Gaussian coefficient
[

n
ℓ

]

q
satisfies

1 < q−ℓ(n−ℓ)

[

n

ℓ

]

q

< 4

for 0 < ℓ < n.



Spheres in the Grassmann Graph

Let W be an N dimensional vector space and let P(W , ℓ) be the
set of ℓ dimensional subspaces of W .

Definition

The sphere S(V , ℓ, t) of radius 2t centered at a space V in
P(W , ℓ) is the set of all subspaces U that satisfy d(U, V ) ≤ 2t,

S(V , ℓ, t) = {U ∈ P(W , ℓ)|d(U, V ) ≤ 2t}.

Theorem

The number of spaces in S(V , ℓ, t) is independent of V and equals

|S(V , ℓ, t)| =
t
∑

i=0

qi2
[

ℓ

i

][

N − ℓ

i

]

for t ≤ ℓ.



Sphere-Packing (Hamming) Bound



Sphere-Packing (Hamming) Bound

Let C be a collection of spaces in P(W , ℓ) such that D(C) is at
least 2t. Let s = ⌊ t−1

2 ⌋.

Theorem

|C| ≤
|P(W , ℓ)|

|S(V , ℓ, s)|

=

[

N
ℓ

]

|S(V , ℓ, s)|

< 4q(ℓ−s)(N−s−ℓ)

In terms of normalized parameters R, λ and δ we have

R ≤ (1 − δ/2)(1 − λ(
δ

2
+ 1)) + o(1),

where o(1) → 0 as N → ∞.



Sphere-Covering (Gilbert) Bound



Sphere-Covering (Gilbert) Bound

Theorem

There exists a code C′ with distance D(C′) ≥ 2t such that

|C′| ≥
|P(W , ℓ)|

|S(V , ℓ, t − 1)|

=

[

N
ℓ

]

|S(V , ℓ, t − 1)|

>
1

16t
q(ℓ−t+1)(N−t−ℓ+1)

In terms of normalized parameters, there exists a code C ′ such that

R ≥ (1 − δ)(1 − λ(δ + 1)) + o(1).



Singleton Bound

Theorem

A q-ary code C ⊂ P(W , ℓ) of type (N, ℓ, logq |C|, D) must satisfy

|C| ≤

[

N − (D − 2)/2

ℓ − (D − 2)/2

]

q

.

In terms of normalized parameters,

R ≤ (1 − δ)(1 − λ) −
1

λN
(1 − λ + o(1))



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

normalized distance δ

co
de

 r
at

e 
R

sphere packing upper bound 

sphere covering lower bound 
Singleton upper bound 

λ=0.25 



A Reed-Solomon-like Code Construction

Let Fq be a finite field and let F be an extension field.

Definition

A polynomial L(x) ∈ F [x ] is called a linearized polynomial with
respect to Fq if

L(x) =
d
∑

i=0

aix
qi

, ai ∈ F .



Linearized polynomials

If L1(x) and L2(x) are linearized polynomials, then so is
α1L1(x) + α2L2(x) for any α1, α2 ∈ F . The ordinary product
L1(x)L2(x) is not in general a linearized polynomial; however, the
composition

L1(x) ⊗ L2(x) := L1(L2(x))

does result in a linearized polynomial. Note that
L1(x) ⊗ L2(x) 6= L2(x) ⊗ L1(x) in general.

The set of linearized polynomials under ⊗ and + forms a
non-commutative ring.



Linearized polynomials (cont’d)

We may regard any extension K of F as a vector space over Fq.
The map taking β ∈ K to L(β) ∈ K is linear w.r.t. Fq, i.e., for all
β1, β2 ∈ K and all λ1, λ2 ∈ Fq,

L(λ1β1 + λ2β2) = λ1L(β1) + λ2L(β2).

If K is large enough to contain all the zeros of L(x). The zeros of
L(x) then correspond to the kernel of L(x) regarded as a linear
map, and hence they form a subspace of K . Conversely, each
subspace of K corresponds to some linearized polynomial over K .



Linearized polynomials (cont’d)

We may regard any extension K of F as a vector space over Fq.
The map taking β ∈ K to L(β) ∈ K is linear w.r.t. Fq, i.e., for all
β1, β2 ∈ K and all λ1, λ2 ∈ Fq,

L(λ1β1 + λ2β2) = λ1L(β1) + λ2L(β2).

If K is large enough to contain all the zeros of L(x). The zeros of
L(x) then correspond to the kernel of L(x) regarded as a linear
map, and hence they form a subspace of K . Conversely, each
subspace of K corresponds to some linearized polynomial over K .

Roughly speaking . . .

linearized polynomials are to subspaces as polynomials are to
points.



Encoding Procedure

Setup:

Fq is a finite field, F = Fqm is an extension field of Fq, regarded as
a vector space of dimension m over Fq. Let α1, . . . , αℓ ∈ F be a
set of linearly independent elements, that span a vector space A of
dimension ℓ over Fq.



Encoding Procedure

Setup:

Fq is a finite field, F = Fqm is an extension field of Fq, regarded as
a vector space of dimension m over Fq. Let α1, . . . , αℓ ∈ F be a
set of linearly independent elements, that span a vector space A of
dimension ℓ over Fq.

The User . . .

. . . provides k elements u0, u1, . . . , uk−1 in F ; this is the message
to be sent.



Encoding Procedure (cont’d)

The Encoder . . .

. . . forms the linearized polynomial

f (x) =
k−1
∑

i=0

uix
qi

and evaluates f (x) at the ℓ points α1, . . . , αℓ to form

β(i) = f (αi ), i = 1, . . . , ℓ.

The set of pairs (α1, β1), (α2, β2), . . . , (αℓ, βℓ) is clearly a set of
linearly independent vectors in A × F ≃ F ℓ+m

q , and so is a basis for

a vector space V of dimension ℓ. (The ambient space W is F ℓ+m
q .)



Encoding Procedure (cont’d)

The Encoder . . .

. . . forms the linearized polynomial

f (x) =
k−1
∑

i=0

uix
qi

and evaluates f (x) at the ℓ points α1, . . . , αℓ to form

β(i) = f (αi ), i = 1, . . . , ℓ.

The set of pairs (α1, β1), (α2, β2), . . . , (αℓ, βℓ) is clearly a set of
linearly independent vectors in A × F ≃ F ℓ+m

q , and so is a basis for

a vector space V of dimension ℓ. (The ambient space W is F ℓ+m
q .)

The Transmitter . . .

. . . sends (a basis for) V over the operator channel.



Some Remarks

Each pair αi , βi may be regarded as a zero of the bivariate
polynomial y − f (x). In fact, since f (x) is linearized, every
element of V is a zero of y − f (x), since, for all
λ1, . . . , λℓ ∈ Fq,

ℓ
∑

i=1

λiβi − f

(

ℓ
∑

i=1

λiαi

)

=
ℓ
∑

i=1

λiβi −
ℓ
∑

i=1

λi f (αi )

=
ℓ
∑

i=1

λi (βi − f (αi ))

= 0

which shows that
∑ℓ

i=1 λi (αi , βi ) is a zero of y − f (x).
Each distinct message polynomial gives rise to a distinct
codeword, hence |C | = qmk . Thus C is of type
(ℓ + m, ℓ,mk , D) with rate

R =
mk

ℓ(ℓ + m)
=

k

ℓ

m

m + ℓ
.



Minimum Distance

Theorem

D(C) = 2(ℓ − k + 1)

Proof: Let U and V be two spaces obtained from distinct
linearized polynomials f1(x) and f2(x), respectively. Suppose that
U ∩ V has dimension a. This means it is possible to find a linearly
independent elements (α′

1, β
′
1), (α

′
2, β

′
2), . . . , (α

′
a, β

′
a) such that

f1(α
′
i ) = f2(α

′
i ) = βi . It is easy to show that α′

1, . . . , α
′
a must

themselves be linearly independent. If a ≥ k , then we would have
two linearized polynomials of degree less than qk that agree on a

linearly independent points, which is only possible if the two
polynomials coincide. Thus a ≤ k − 1, so

d(U, V ) = 2(ℓ − a) ≥ 2(ℓ − k + 1).



Reed-Solomon-like Codes

This construction yields codes of type (ℓ + m, ℓ,mk , 2(ℓ − k + 1)).
In terms of normalized parameters, we find that

R = (1 − λ)(1 − δ +
1

λN
)

which has the same asymptotic behavior as the Singleton bound.



Decoding

Suppose that V is sent and U, a space of dimension ℓ′ is received.
Let (xi , yi ), i = 1, . . . , ℓ′ be a basis for U. Decoding may proceed
as follows.

1. Construct a bivariate interpolating polynomial

Q(x , y) = Λ(y) + Ω(x)

such that Q(xi , yi ) = 0 for i = 0, . . . , l ′ with Λ(y) is a monic
linearized polynomial of degree qt and Ω(x) is a linearized
polynomial of degree at most t + k − 1, where t = ⌊(ℓ′ − k)/2⌋.
[Such a polynomial can be proved to exist.]



Decoding (cont’d)

2. Note that

Q(x , f (x)) = Λ(x) ⊗ f (x) + Ω(x)

= Λ(y − f (x)) + Q(x , f (x)).

If few enough errors occur, then Q(x , f (x)) will have many zeros
(more than its degree), and so Q(x , f (x)) will be the zero
polynomial, in which case Q(x , y) = Λ(y − f (x)) will have
y − f (x) as a factor.

3. f (x) can be recovered via a division operation in the ring of
linearized polynomials. to recover f (x).
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Conclusions

This paper:
Coding for random network coding

⇓
Coding for operator channels

⇓
Codes in the Grassmann graph

⇓
Bounds, Code Constructions, Decoding Algorithms

This seems to be a promising approach, with much work left to be
done.


